Exact Analytical Solution for 3D Time-Dependent Heat Conduction in a Multilayer Sphere with Heat Sources Using Eigenfunction Expansion Method
نویسنده
چکیده
An exact analytical solution is obtained for the problem of three-dimensional transient heat conduction in the multilayered sphere. The sphere has multiple layers in the radial direction and, in each layer, time-dependent and spatially nonuniform volumetric internal heat sources are considered. To obtain the temperature distribution, the eigenfunction expansion method is used. An arbitrary combination of homogenous boundary condition of the first or second kind can be applied in the angular and azimuthal directions. Nevertheless, solution is valid for nonhomogeneous boundary conditions of the third kind (convection) in the radial direction. A case study problem for the three-layer quarter-spherical region is solved and the results are discussed.
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملEstimation of the Strength of the Time-dependent Heat Source using Temperature Distribution at a Point in a Three Layer System
In this paper, the conjugate gradient method coupled with adjoint problem is used in order to solve the inverse heat conduction problem and estimation of the strength of the time- dependent heat source using the temperature distribution at a point in a three layer system. Also, the effect of noisy data on final solution is studied. The numerical solution of the governing equations is obtained b...
متن کاملAn exact analytical solution for two-dimensional, unsteady, multilayer heat conduction in spherical coordinates
Analytical series solution is proposed for the transient boundary-value problem ofmultilayer heat conduction in r–h spherical coordinates. Spatially non-uniform, but time-independent, volumetric heat sources may exist in the concentric layers. Proposed solution is valid for any combination of homogenous boundary conditions of the first or second kind in the h -direction. However, inhomogeneous ...
متن کاملHeat Conduction in Spherical Composite Vessels
This paper presents an exact analytical solution for two-dimensional conductive heat transfer in spherical composite pressure vessels .The vessels are in spherical shape and fibers are winded in circumferential direction. The analytical solution is obtained under the general boundary conditions which consist of convection, conduction and radiation inside/outside of vessel. The heat transfer equ...
متن کاملA truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014